Temperature and Bias Voltage Studies of a Large Area Position Sensitive Avalanche Photodiode

A. Vandenbroucke, J. Lee, V. Spanoudaki, F.W.Y. Lau, P.D. Reynolds, C.S. Levin

Abstract—We are constructing a 1 mm3 resolution, high sensitivity PET detector system with depth of interaction capability. The detectors are built from modules comprising LSO crystal arrays coupled to Position Sensitive Avalanche Photodiodes (PSAPDs). The entire system will have 4,608 densely packed dual LSO-PSAPD modules. The performance of the large area (1x1 cm2) PSAPDs in our system depends on bias voltage and temperature. Coincidence data was obtained by placing a 22Na source between an LSO crystal coupled to a PMT and an LSO-PSAPD module. The bias voltage was varied between 1695 and 1780 V. The energy resolution remains constant around 14.1 ± 0.01 % (Standard Error - SE) FWHM at 511 keV between 1710 and 1780 V, and decreases by about 5 % when the applied voltage is between 1695 and 1710 V for a specific sample. Crystal identification capability stays constant over the observed range of temperature. The point where those two exponentials intersect corresponds to the beginning of the avalanche breakdown. The module’s temperature was varied using a thermoelectric cooler coupled to a heatsink. In general, decreasing the temperature of a PSAPD improves performance. The coincidence time resolution improved a factor of 2 for every 35 Volt increase and can be described by two exponentials. The gain increases by a factor of 2 for every 20 V change. The gain increase is even larger (14.43 ± 0.01 % (SE) FWHM at 39°C to 1.96 ± 0.03 ns (SE) at 5 °C. 511 keV energy resolution improved from 14.43 ± 0.01 % (SE) at 39°C to 11.82 ± 0.01 % 5°C. PSAPD gain increases by 25 % every 4.5°C increase. The rate of gain increase is even larger (10 % per degree) at the lowest temperature.

The dual panel breast PET scanner we are developing will be built out of 4,608 dual LSO-PSAPD modules, one of which is depicted on the left side of Fig. 1. Each module consists of two 8 x 8 arrays of 1 x 1 x 1 mm3 LSO crystals. Each of these arrays is coupled to two distinct, large area (1 x 1 cm2) PSAPDs, which are both mounted on the same flex circuit. The PSAPDs each have 5 readout channels, one for the p–side and four coupled to the n–side over a resistive sheet giving spatial information [4]. The use of a PSAPD enables us to read out 128 crystals with only 10 channels per dual LSO-PSAPD module. This number can be even further reduced by applying a dedicated multiplexing scheme [5]. For this work, the PSAPD is embedded in an Aluminum Nitride (AlN$_3$) frame providing mechanical strength and electrical isolation.

The PET scanner will be built from many stacks of these LSO-PSAPD modules as indicated in the right side of Fig. 1. 511 keV photons from positron decays will hit the stack ‘edge-on’, so that an effective thickness of at least 1.6 cm of LSO is provided. Depth of Interaction (DOI) is directly measured by the segmentation of the LSO arrays and the position sensitivity of the PSAPD. The proposed design enables the identification of the annihilation photon interaction locations in all three dimensions.
One LSO-PSAPD module, biased to 1740 V, produces about 2 mW of power. In addition, the readout electronics in the back of the system produce about 200 W of heat. The proposed cooling from the sides of the registration cards will result in a temperature gradient in the system. Preliminary simulations showed a gradient of about 4°C across the registration cards [2]. This paper shows the performance dependence of an LSO-PSAPD module as a function of temperature, and at the same time we investigate the influence of bias voltage on the performance of the LSO-PSAPD modules.

II. METHODS

All data presented was obtained using a 22Na point source. To obtain coincidence timing information, a $1 \times 1 \times 1$ cm3 LYSO block was connected to a Hamamatsu H3164 Photo Multiplier Tube (PMT) using optical grease (BICRON BC 630) and Teflon tape. As depicted in Fig. 3, the 22Na point source was positioned in between the LSO-PSAPD detector module and the LYSO-PMT detector. The height of the source was adjusted to assure that every 1 mm3 crystal receives about the same number of 511 keV photons.

The PSAPD’s charge output was amplified using a charge sensitive preamplifier (CR-110 by CREMAT). The signal from the preamplifier was fed into an ORTEC-855 spectroscopy sensitive preamplifier (CR-110 by CREMAT), and further shaped by a fast filter amplifier (ADC). Timing information was obtained by the PSAPD’s common (p-side) signal, which was also preamplified by a CR-110 from CREMAT, and further shaped by a fast filter amplifier (ORTEC-579). An ORTEC 935 constant fraction discriminator (CFD) was used to discriminate noise and to mitigate time walk. The PMT’s output was fed directly into the same CFD, and served as a start signal for the ORTEC 567 time to amplitude converter (TAC). A variable fine delay (ORTEC 425A) between the PMT’s output and the TAC accounted for calibration of the TAC. The signal of the PSAPD’s common signal served as a stop signal for the TAC. Because of the large delay used in the CFD for the PSAPD’s common, no additional delay was necessary for the TAC’s stop signal. The CFD threshold for both PMT and PSAPD were set well below the Compton edge but above the noise floor. One of the TAC’s output went into the ADC, the other into a gate generator (ORTEC 416A) serving as a trigger for the ADC unit. A schematic of the setup is shown in Fig. 3.

For the temperature dependence studies, the LSO-PSAPD module was placed in a sealed container schematically depicted in Fig. 4. Dry air was blown in the container to prevent moisture from condensing on the modules. The temperature was modified by changing the current to a thermoelectric (Peltier) cooler positioned between the module and a heat sink. In order to achieve temperatures above and below the ambient temperature, the polarity of the supply to the peltier cooler was reversed. The temperature was measured by a thermocouple wire connected to the AlN$_3$ frame enclosing the LSO-arrays and touching the outer edge of the PSAPDs. AlN$_3$ is a thermal conductor and therefore we assumed it to be in equilibrium with the temperature of the PSAPDs.

As an indication of uniform irradiation, Fig. 5 shows a flood histogram at room temperature and bias voltage of $-$1735 Volt. All 64 individual crystals are clearly identified.

For each individual crystal, we determined gain, energy and time resolution. Gain was assessed by the 511 keV photopeak position. We measured an average gain of 7.37 ± 0.23 V, an average energy resolution of 13.5 ± 0.6 % FWHM, and an average time resolution of 2.9 ± 0.2 ns. The quoted error bars here are RMS standard deviation.
Fig. 5. Flood histogram of an 8×8 array coupled to a PSAPD.

Fig. 6. Gain, energy and time resolution for all crystals of an 8×8 array. Data obtained at 22.6°C.

In order to assess the crystal identification capability, a figure of merit was introduced for a profile through the crystals seen in the flood histogram:

$$\text{FOM} = \frac{\text{Average distance between the peaks}}{\text{FWHM of the peaks}}.$$

This FOM was calculated for a top and a center row. Fig. 7 shows an example of a top and a center profile histogram through the flood spectrum. The pincushion apparent in Fig. 5 is reflected in the figure.

Fig. 7. Profile histogram through the flood of Fig. 5 for a top (top) and bottom (bottom) row. Each peak position is normalized to one.

III. RESULTS

Fig. 8 shows the performance variation as a function of temperature. Error bars in the figure are standard error (SE). The previously mentioned gain, energy and coincidence time resolution at 22.6°C can easily be determined in the figure. We see that the gain increases exponentially with decreasing temperature. An exponential function was fit to the data. Fit parameters are indicated in the figure and indicate that the PSAPD gain increases by about 25% every 4.5 degrees. At temperatures below about 8°C, the gain deviates from the fitted exponential.

The energy resolution remains constant between 10°C and 30°C. At lower (higher) temperatures the energy resolution improves (degrades). The coincidence time resolution improves at lower temperatures. A third order polynomial was fit to the data, and we see that the increase in time resolution has a less than exponential dependence on temperature. Also crystal identification improves at lower temperatures as observed from the FOM.

Another important observable which may vary as a function of temperature is the location of the peak crystal intensity in the flood histogram. Fig. 9 shows the peak locations for different temperatures. A compression in crystal peak locations at lower temperatures can be observed. This compression is probably caused by preamplifier saturation due to a higher gain at lower temperatures for events occurring at the corner. Saturation only occurs for these corner events since we do not observe similar compression at the center rows and columns.

The light output of LSO is also dependent on temperature. Reference [6] claims a decreased light output of 25% between 275 K ($\sim 2°C$) and 310 K ($\sim 35°C$) for LSO, while [7] reports a decrease between 8% and 37% depending on the Cerium concentration. Within the temperature range discussed...
in this paper, the scintillation light variations are low. Moreover, the investigation presented here aims at evaluating the performance of the combined LSO-PSAPD module.

Apart from the varying light output of the scintillation crystal, its emission spectrum may also shift towards shorter wavelengths at lower temperatures. This effect was for instance observed in the LabPET system [8] where the LGSO’s emission spectrum establishes a temperature dependent wavelength shift. The LYSO’s output in the same scanner (LabPET) does not have such a temperature dependence [9].

Looking at the location of the peak crystal intensity in the flood histogram, Fig. 11, no variation is observed. We consequently can adjust the bias voltage without penalty in the flood histogram peak location. Thus, assigning crystal positions to individual events is independent of the bias voltage.

IV. DISCUSSION

As expected we see an improved performance at lower temperatures. This is due to the fact that at lower temperatures lattice vibrations are less apparent, which causes charge carriers to have a larger mean free path, and thus lose less
energy to lattice phonons [11]. This is also reflected in higher electron and hole mobilities at lower temperatures [12, 13]. The band gap (E_g), however, increases at lower temperatures, due to a shift in the relative position of the conduction and valence bands [14]. The band gap dependence causes the average energy to create an electron-hole pair, ϵ, to increase with decreasing temperature. Indeed, [15] reports a relation: $\epsilon = 2.15 E_g(T) + 1.2$. The band gap is quadratically dependent on the temperature according to [14]. The electron and hole mobility dependence [12], however, outweighs the bandgap dependence. The combined effect of a higher carrier mobility and a wider bandgap is that of an increased gain at lower temperatures.

The higher gain at lower temperatures also decreases the breakdown voltage as a function of temperature. Fig. 12 shows the leakage current as a function of bias voltage for 5 different temperatures. The steep increase in leakage current at about 22.6°C and 35.8$^\circ$C is evident. Without any temperature regulation or compensation, in our breast PET camera, a degraded performance will be inevitable. Therefore, a dedicated implementation of temperature regulating structures will be mandatory.

Our measurements indicate that optimal performance is achieved just below breakdown. Breakdown itself is a function of temperature. We showed an optimal performance over a window of about 25 V. The data presented in this paper thus shows that adjusting the bias voltage can compensate for small temperature drifts. The data suggests furthermore that the optimal bias voltage can be determined by analyzing the gain change as a function of bias voltage.

The bias voltage dependence also shows that the coincidence time resolution is the parameter which depends strongest on the applied bias voltage. Coincidence time resolution however is experimentally harder to assess and especially takes longer than the acquisition of single events for a large number of detectors. By identifying the intersection of the two exponential curves describing the gain, we may be able to identify the optimal bias voltage in a much simpler way.

A cross study where the gain is optimized at every temperature is planned as a follow up for the measurements presented here. In addition, we want to investigate whether we can decrease the bias voltage at lower temperatures, thus keeping the gain constant, and still have a similar performance.

V. CONCLUSION

This paper presents the temperature and bias voltage dependence of dual LSO-PSAPD modules which we plan to use in a dedicated PET breast camera. At room temperature and optimal bias voltage, an energy resolution of 14.4 ± 0.01% (SE) FWHM is observed together with a coincidence time resolution of 2.63±0.02 ns (SE) for a specific sample. We have confirmed that the performance deteriorates with increasing temperature. Without any temperature regulation or compensation in our breast PET camera, a degraded performance will be evident. Therefore, a dedicated implementation of temperature regulating structures will be mandatory.

The bias voltage dependence measurements depicted in Fig. 12 show the leakage current as a function of bias voltage for 5 different temperatures. The steep increase in leakage current at about 1710 and 1720 V for 0.2°C and 7.2°C respectively in the figure is an indication of breakdown. The same figure suggests breakdown around 1730 V at 13.6°C, and no clear evidence of breakdown at 22.6°C and 35.8°C.

![Leakage Current vs Bias Voltage](image)

Fig. 12. Leakage current as a function of bias voltage for 5 different temperatures.

The bias voltage dependence measurements depicted in Fig. 10 suggest that the optimal bias voltage for the PSAPDs is around the region where the two exponential intersect. Indeed, it is known that an APD’s optimal performance happens just below breakdown, as it gives optimal signal to noise ratio. The red exponential in the top left of Fig. 10 describes the regime of quenched breakdown. We call the breakdown quenched, since the leakage current still goes up with bias voltage. At the same time, the deviation from the exponential fit below about 5°C in Fig. 8 top left can now also be explained: below 5°C the module is operating in quenched breakdown mode and hence the gain does not follow the original exponential behavior, but changes more drastically as a function of temperature.

REFERENCES

